会声会影素材整体平移,会声会影素材无法拖动

会声会影素材整体平移,会声会影素材无法拖动

室女座星系团中超大质量星系Messier87中心的黑洞图像,距离地球5500万光年,质量为太阳的65亿倍。图源/中科院之声

此次发布的黑洞照片揭示了室女座星系团中超大质量星系M87中心的黑洞,它距离地球5500万光年,质量为太阳的65亿倍。这个“超巨型”质量黑洞的真容,由分布在全球各地的8个射电望远镜组成的虚拟望远镜阵列共同完成,有两百多位科研人员参与其中。

与科幻电影中导演们各种各样“自以为是”的演绎不同,这张由“事件视界望远镜”

四十年前,英国物理学家史蒂芬·霍金将量子论引入黑洞的经典理论,提出霍金辐射

会声会影素材整体平移,会声会影素材无法拖动

《黑洞不是黑的:霍金BBC里斯讲演》,【英】史蒂芬·霍金(StephenHawking)著,吴忠超译,湖南科学技术出版社2017年7月版。

(以下内容摘编自《黑洞不是黑的:霍金BBC里斯讲演》中文版,原作者为史蒂芬·霍金,文中DS部分为大卫·舒克曼书写的导读和注解,以便读者了解。)

黑洞并不是想象的那么黑

就像科学家约翰·惠勒说的那样,“黑洞无毛”,因此人们从外部无法得知黑洞内部是怎样的,除了它的质量、旋转状态和电荷这三样信息。这表明,黑洞内部隐藏着大量外部世界无法得知的信息。如果隐藏在黑洞内部的信息量取决于黑洞的尺度,人们从一般的原理就能预料到,黑洞将会拥有一个非零的温度,而这意味着黑洞将会发出热辐射,就会像一块炽热的金属一样发光。但那是不可能的,众所周知,没有任何东西可以从黑洞中逃逸出来。或者说,那时人们就是这么认为的。

DS:量子力学是极小空间尺度下的科学,它探索解释最小尺度的粒子行为。这些粒子不遵循制约像行星那样巨大得多的物体的运动定律,也就是说,它们不遵循艾萨克·牛顿创立的

DS:这些计算首次证明,黑洞不一定是只进不出的通往死地的单行道。自然而然地,该理论所提出的辐射被称为“霍金辐射”而闻名。

自此,黑洞发射热辐射的数学证据也逐渐被其他科学家用各种不同的手段所确认。下面让我试着解释这些发射是如何产生的,但这并不是理解该理论的唯一方法。量子力学表明,整个空间充满了虚粒子和虚反粒子组成的虚粒子对,它们不断在空间中成对地成为实体,分离,然后再次碰撞并相互湮灭。

会声会影素材整体平移,会声会影素材无法拖动

这些粒子之所以称作“虚的”,那是因为不像实粒子那样,我们不能用检测器直接观察到它们。尽管如此,可以测量到它们的间接效应,而且所谓的兰姆移动的一种小移动证实了它们的存在。兰姆移动指的是它们在受激的氢原子发射的光谱能级上产生的分裂。现在,在黑洞的场合,虚粒子对中的一个成员可能落进黑洞,留下了失去伴侣的另一成员,因而这个成员无法湮灭。被遗弃的粒子或反粒子有可能随它的伴侣落入黑洞,但是它也有可能向无限逃逸,这样的粒子就作为从黑洞发射出的辐射而出现了。

DS:这一部分理解的关键点在于,通常无人注意到虚粒子对的形成和消失。不过,如果这个过程恰巧正发生在黑洞的边缘,虚粒子对中的一个粒子可能被拖拽进去,而另一个却没有。那么,逃逸的粒子就会显得似乎正被黑洞“吐出来”。

一个太阳质量的黑洞泄出粒子的速度非常非常慢,以至于我们不可能检测到该过程。然而,如果有质量小得多的“微”黑洞,比如说一座山那么重的黑洞。像山那么重的黑洞会以大约10万亿瓦的速率辐射出X射线和伽玛射线,足以给整个地球提供电能。然而,要控制并利用这样一个微黑洞绝非易事。你不能直接把它放在发电厂,因为它会穿过地板不断往地心落去,并在地心处停下来。如果我们拥有这样的一个黑洞,那保管它的唯一方法就是把它放到环绕地球的轨道上。

会声会影素材整体平移,会声会影素材无法拖动

根据某些理论的理解,我们体验的宇宙只是在十维或十一维空间中的一个四维面。影片《星际穿越》当中也体现了这个理解。因为光无法通过这些额外维度,而只能通过我们所处宇宙的四个维度传播,所以我们看不见额外维度。然而,引力却会影响额外维度,并且引力在那里的作用比在我们的宇宙中强大得多。

因此,在额外维度中形成小黑洞要容易得多。在瑞士的欧洲粒子物理研究所的LHC,即大型强子对撞机的实验中,我们也许有机会能观察到这样的现象。在LHC当中有一条周长达到27千米的圆形隧道,两束粒子沿着相反方向围绕这个隧道飞行,并且最终被强迫碰撞。有些碰撞也许会产生微黑洞。这些黑洞会以一种容易被辨认的模式发射出粒子,我们可以通过这个方式来验证我的理论。所以我终究有可能得个诺贝尔奖的!

随着粒子从黑洞逃逸,黑洞将损失质量,并且收缩。而这个行为将使粒子发射率增大,也就是说黑洞损失质量的速率将越来越大。最后,黑洞将会失去它的全部质量并且消失。那么已落进黑洞的所有粒子和倒霉的航天员的命运将会如何呢?当黑洞消失时,他们当然不可能就这么重新出现了。在我们看来,除了总质量、旋转的量和电荷,之前落入黑洞的物体的信息全部丢失了。但是,如果这些信息真的全部丢失了,就会造成一个直击我们现有的科学理解核心的严重问题。

据说,拿破仑曾经问过拉普拉斯,在他的理论当中,上帝起了什么作用,而拉普拉斯回答道:“阁下,我不需要假设上帝在我的理论当中起了任何作用。”我认为拉普拉斯的这句话并不是在断言上帝不存在——只是说上帝不干预世界使之违背科学定律。这点必然是每位科学家都确信的。科学定律如果只在某位超自然的存在决定让事物运行而不加干涉时才成立,那科学定律就不成其为科学定律了。

如果信息在黑洞中丢失,我们就不能预言未来,因为黑洞可能发射出任何一堆粒子。它甚至能发射出一台好使的电视机,甚至是一套真皮精装的莎士比亚全集,尽管这种奇异的发射概率极其微小。你可能会觉得,就算我们不能预言从黑洞里会跑出什么东西来,也没啥大不了的,反正在我们周围没有任何黑洞。

因此,信息在黑洞中是否真的丢失了,或者在原则上它是否能被恢复,是一个非常重要的研究课题。许多科学家觉得信息是不应该丢失的,但没人能提出一个能保存信息的机制。关于这个课题的争论持续了多年。最后,我找到了自以为是正确的答案,它依赖于理查德·费恩曼的下面这个思想,存在许多不同的可能的历史,每种历史都有其发生的概率,而非一个单独的历史。在这个情形下,存在着两大类历史。其中一类,空间中存在一个黑洞,粒子可以落入这个黑洞;在另一类历史中,空间中不存在黑洞。

DS:在持宇宙的完全决定论观点的理论中,你能烧毁一部百科全书,而且接着重新构建出它——前提条件是,你知道组成这部百科全书的墨水和纸的每个分子的每颗原子的特征和位置,并且一直跟踪着它们的一切的话。

目前,我正和剑桥的同事马尔科姆·佩里以及哈佛的安德鲁·斯特罗明格研究基于所谓超平移的数学思想的新理论,以期解释使信息从黑洞返回外部的机制。根据我们的理论,信息被编码到了黑洞的视界上。敬请期待我们在未来发表进一步的消息!

黑洞没有毛吗?

有人说,事实有时比小说更不可思议,没有什么比黑洞的情形更体现这点了。黑洞比科幻作家的任何异想天开都更怪异,但它们却是已经被科学证明了的存在。科学界不仅较晚才意识到大质量恒星可在自己的引力作用下往恒星中心坍缩,而且在对坍塌后留下的天体和物质的行为的相关思考也很迟缓。

DS:“黑洞”这个词字面意思很简单,但是要想象在太空中某处一个真实存在的黑洞则比较困难。试着想象有一个巨大的下水口,水盘旋着流入其中。任何东西一旦滑过这个下水口开始下倾的边缘—对应黑洞当中所谓的“事件视界”—就无法返回。因为黑洞是如此强有力,甚至连光都会被它们吞没,所以我们实际上看不到它们。不过科学家知道它们的确存在,因为黑洞会将靠其太近的恒星撕裂开来,与此同时向太空中发出振荡波。最近一项有重大意义的科学成果就是探测到了正是超过十亿年前两个黑洞碰撞产生的所谓的“引力波”。

在一颗正常恒星的几十亿年寿命的大部分时间里,支持恒星对抗自身引力的力量来自于恒星内部的热压力,而热压力产生于将氢转变成氦的核反应过程中。

DS:美国航空航天局用高压锅来比喻恒星。恒星内部的核聚变的爆炸力产生了向外的压力,将一切都往内拉的恒星自身引力把这压力约束在恒星内部。

然而,恒星最终必将耗尽它的核燃料,失去与自身引力对抗的热压力。这时候恒星就会收缩。在某些情形下,它可能变成一颗“白矮星”而支持自身。然而,1930年萨拉玛尼安·钱德拉塞卡证明,白矮星的质量大小是有上限的,其最大质量是太阳质量的1.4倍。苏联物理学家列夫·朗道对全部由中子构成的恒星计算出类似的最大质量。

DS:白矮星和中子星都曾是像太阳那样的恒星,而其内部的核燃料已经燃烧殆尽。由于失去了使之胀大的力量,无法阻止自身引力拉力将其缩小,于是它们就变成了宇宙中的某些最致密的天体。不过在恒星的大小排名表上,这些恒星却是相对较小的,这意味着它们的自身引力大小不足以使恒星完全坍缩。因此,史蒂芬·霍金和其他人最感兴趣的问题是,最大的恒星在到达其生命终点时会发生什么?

会声会影素材整体平移,会声会影素材无法拖动

那么,当那无数拥有比白矮星或中子星更大质量的恒星耗尽它们的核燃料时,它们的命运又如何呢?罗伯特·奥本海默,后来的原子弹之父,研究了这个问题。1939年,在和乔治·沃尔科夫、哈特朗德·斯奈德合作的两篇论文中,他证明了,这样大质量的恒星,其内部向外的压力不足以支持自己;而且如果你在计算中忽略压力,那么一颗均匀的球面对称的恒星就会收缩到具有无限密度的单独的一点。这样的一点被称为奇点。

会声会影素材整体平移,会声会影素材无法拖动

我们有关空间的所有理论都是在假定时空是光滑和几乎平坦的基础上表述的。所以这些理论在奇点处都崩溃了,因为在那里的时空曲率为无限大。事实上,奇点标志着时间本身的终结,这也正是爱因斯坦对之持有异议的原因。

DS:爱因斯坦的广义相对论认为,物体使围绕它们的时空变形。想象放在一张蹦床上的一个保龄球,它会改变蹦床布料的形状,使得其他较小的物体朝它滑去。人们通常用这种办法来比喻和理解引力效应。倘若时空的弯曲程度越来越厉害,最终变成无限大,在此处我们日常所熟知的时空规则就不再适用。

接着第二次世界大战来临。大多数科学家,包括罗伯特·奥本海默,都将注意力转向核物理,引力坍缩问题被大多数人遗忘了。而被称为“类星体”的遥远天体的发现重新激起了科学家们对这个研究课题的兴趣。

DS:类星体(quasar)是宇宙中最明亮的一类天体,也可能是迄今为止能够被检测到的最遥远的天体。这名字是“类恒星射电源天体”(quasi-stellarradiosources)的缩写,而且它们被认为是围绕黑洞涡旋的物质盘。

本文摘自《黑洞不是黑的:霍金BBC里斯讲演》,较原文有删改,已获得湖南科学技术出版社授权发布。

编辑:走走;

校对:薛京宁

日常中,影像拍摄中的抖动不可避免:相机端不稳,成像模糊。人眼本身带有极为“精密”的防抖系统,抖动对人眼来说并没有什么影响,然而对于拍照这种精细活来说,抖动影响很大。

了解防抖,我们首先需要手机拍摄过程中需要防止哪些“抖动”。

日常影响手机拍照的“抖动”有哪些?

日常手机拍照中,常见的“抖动”可以大体分为三种:分别是相机抖动(HandheldCameraShake)、动态模糊(MotionBlur)和卷帘门效应(RollingShutter)。

相机抖动

会声会影素材整体平移,会声会影素材无法拖动

相机抖动难以避免

会声会影素材整体平移,会声会影素材无法拖动

摄影绝学“铁手功”

动态模糊

运动模糊(MotionBlur)指的是画面快速移动造成明显的模糊拖动痕迹。如果还不清楚的话,下方图片就很好的诠释了什么是“动态模糊”。

会声会影素材整体平移,会声会影素材无法拖动

运动模糊用的好,偶尔也会成为艺术

造成运动模糊的原因主要有二:1、运动速度快过了曝光时间。曝光时间越长,运动模糊的“抖动”就越大。2、连续的运动使得镜头没能细致捕捉每一帧的画面,进而造成动态模糊。

卷帘门效应

会声会影素材整体平移,会声会影素材无法拖动

会声会影素材整体平移,会声会影素材无法拖动

如果被拍摄物体相对于相机高速运动或快速振动时。用卷帘快门方式拍摄,逐行扫描速度不够,拍摄结果就可能出现“倾斜”、“摇摆不定”或“部分曝光”等情况。这种卷帘快门方式拍摄出现的现象,就定义为果冻效应或卷帘门效应。

现在,我们已经了解了抖动的类型和抖动对手机拍照产生的影响,接下来我们探究如何防抖这一拍摄难题。

如何在手机的方寸之间解决“防抖”难题

“防抖”最早应用于相机,一般标准焦距或者广角的镜头由于焦距较短,重量不大,手持就已经足够应付大多数场景;而在长焦/微距的拍摄过程中,光圈不变的情况下,就需要足够的曝光时间,如果这时候再手持拍摄的话,很容易成像抖动。

会声会影素材整体平移,会声会影素材无法拖动

手机本身光圈有限,进光量堪忧,想要获得足够清晰地图片就需要足够长的曝光时间,就必须学习单方相机“光学防抖”这一技术的趋势。

就像变焦分数码与光学一样,“防抖”在智能手机的摄像头上也主要有

光学防抖(OIS)

以及

电子防抖(EIS)

机身传感器防抖

;如果按照复杂程度来分,还可以分为两轴、三轴(iPhone6sPlus)、四轴(小米6)、五轴(OPPOReno2)。

光学防抖(OIS)

光学防抖,简写OIS为Opticalimagestabilization的缩写。通过镜头的浮动透镜来纠正“光轴偏移”。其原理是通过镜头内的陀螺仪侦测到微小的移动,然后将信号传至微处理器,处理器立即计算需要补偿的位移量,然后通过补偿镜片组,根据镜头的抖动方向及位移量加以补偿;从而有效地克服因相机的振动产生的影像模糊。

会声会影素材整体平移,会声会影素材无法拖动

光学防抖原理

手持智能手机拍照时,手的抖动会造成相机的轻微倾斜(一般在+/-0.5度以内),该倾斜引起了镜头观察角度的变化,以镜头为参照物来说,相当于被拍摄的物体移动了,因此所成的像也会在图像传感器上相对于原位置发生偏移,结果造成图像始终随着手的抖动而处于不稳定状态。

会声会影素材整体平移,会声会影素材无法拖动

HTC最早将“光学防抖”引入手机

1、弱光环境。

弱光下相机为了获得可接受的成像质量,会自动延长曝光时间。因此,曝光时间内手抖造成的图像移动会变得显著得多。OIS技术可以有效解决弱光环境下图像漂移问题。

2、变焦时。

数码或光学变焦在将远处景物放大、视角缩小的同时,也会将手抖的影响放大。这时候OIS的优势就表现出来了。

4、运动中拍摄,或是处于颠簸中拍摄。

以上三种情况讨论的都是自然手抖,通常其抖动幅度不大,如在颠簸环境中,外界引起的手抖往往大大超过自然手抖的幅度,而且抖动幅度很难预测。OIS虽很难完全补正颠簸抖动,但能在很大程度上减小颠簸感。

会声会影素材整体平移,会声会影素材无法拖动

看不懂也没关系,你只要知道光学防抖是这样动的就可以了。

传感器防抖

传感器防抖技术原理和镜头防抖差不多,其主要将传感器安装在一个可自由浮动的支架上,同样配合需要陀螺仪感应相机的抖动方向和幅度,进而控制传感器进行对应的位移补偿。为何要涉及如此多的修正方向,主要原因是减少拍照时手的不规则抖动。

会声会影素材整体平移,会声会影素材无法拖动

会声会影素材整体平移,会声会影素材无法拖动

五轴防抖技术与五轴的各自作用

除了光学防抖和传感器防抖的硬件防抖外,软件防抖电子防抖(EIS)也是必不可少。

电子防抖(EIS)

电子防抖是市面上的手机中使用得最多的防抖技术,无需任何元器件辅助也可实现,主要通过程序对传感器上的图像进行分析和采集。当照片被拍糊时,利用边缘图像对模糊部分进行补偿,从而实现“防抖”,其防抖原理更像是对照片进行“后期处理”。

开启电子防抖后,取景画面会有非常明显的裁切,然而被裁切的部分并非传感器停止了工作,而是电子防抖系统会将这一部分的数据用于抖动补偿。也就是说照片被裁切成两部分,最外面的部分用于补偿里面的一部分。在没有防抖机械结构的前提下依然能带来一定的防抖效果。

会声会影素材整体平移,会声会影素材无法拖动

在OPPOR9sPlus就实现了光学防抖+电子防抖

这样,我们也就发现

电子防抖的缺陷:画面会被裁切。

OPPO的“防抖”有独家秘笈

会声会影素材整体平移,会声会影素材无法拖动

画面中右侧是OPPOReno2拍摄所得,没有借助额外的稳定器类设备。从动图中我们可以很明显的看出,OPPOReno2拍摄的画面稳定程度要远超左侧的机型。即使在剧烈运动中也没有出现摇晃的感觉,可以看出OPPOReno2的防抖稳定。

会声会影素材整体平移,会声会影素材无法拖动

会声会影素材整体平移,会声会影素材无法拖动

会声会影素材整体平移,会声会影素材无法拖动

陀螺仪原理

防抖技术是OPPO拍摄实力的结晶

会声会影素材整体平移,会声会影素材无法拖动

会声会影素材整体平移,会声会影素材无法拖动

OPPOR9sPlus的滚珠式滑轨防抖结构

2016年12月,OPPOR9sPlus发布,其搭载了全新结构的OIS+光学防抖技术,全新的滚珠式滑轨防抖结构,使得R9sPlus实现微米级的防抖精度,保证运动状态或暗光环境下拍照时,有效克服因抖动而产生的画面模糊,成像更稳定更清晰。

OPPO召集了上下游供应商坐在一起,专门讨论防抖技术的研发。防抖技术需要非常的精密复杂的设计,对镜片、对焦系统、CMOS等要求更为苛刻,而且对陀螺仪传感器、镜头玻璃材质、软件算法等要求更高,现有产品和解决方案根本无法满足。

面对一项全新的技术,需要拿出真金白银来进行研发和各种测试,各家供应商也都拿出了足够的诚意。面对风险,OPPO与供应链企业抱团战斗,也促使了新技术的迅速出炉。

会声会影素材整体平移,会声会影素材无法拖动

本文来自:站站来看你了,不代表聚客号立场!

如若转载,请注明出处:https://www.jukehao.com/50702.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件到xx1080@qq.com举报,一经查实,本站将立刻删除。